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Sensitivity of Critical Transmission Ranges to Node
Placement Distributions
Guang Han and Armand M. Makowski, Fellow, IEEE

Abstract—We consider the geometric random graph
where n points are distributed independently on the unit
interval [0, 1] according to some probability distribution
function F with density f . Two nodes are adjacent (i.e.,
communicate with each other) if their distance is less than
some transmission range. We survey results, some classical
and some recently obtained by the authors, concerning
the existence of zero-one laws for graph connectivity, the
type of zero-one laws under the specific assumptions made,
the form of its critical scaling and its dependence on
the density f . We also present results and conjectures
concerning the width of the corresponding phase tran-
sition. Engineering implications are discussed for power
allocation.

Index Terms—Geometric random graphs, Connectivity, Zero-
one laws, Phase transitions, Power allocation.

I. INTRODUCTION

OUR starting point is a paper by Gupta and Kumar [14]
which has recently revived interest in the disk model as

a framework for wireless ad-hoc networks. The setting is that
of a wireless ad-hoc network serving n users (interchangeably
referred to as nodes) which are distributed over some region
D of the plane. The nodes, labelled 1, 2, . . . , n, are placed
at the random locations X1, . . . , Xn, respectively, in D. A
simplified pathloss model is assumed, and there is no user
interference and no fading. Users all transmit at the same
power level P . For distinct users i and j located at Xi and
Xj , their received power Pi,j is given by

Pi,j := P · ‖Xi − Xj‖−ν

for some pathloss exponent ν > 0. Under this communication
model, nodes i and j are then able to communicate if Pi,j ≥ Γ
for some threshold Γ > 0 (whose selection is guided by
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bit error rate considerations, among other things). As this
condition is equivalent to requiring

‖Xi − Xj‖ ≤ ρ with ρ :=
(

P

Γ

)1/ν

, (1)

we can view the transmission range ρ as a proxy for the
transmit power P .
Given a transmission range ρ > 0, the relation (1) defines

a notion of adjacency amongst nodes, giving rise to the undi-
rected geometric random graph G(n; ρ) on the set of nodes
1, . . . , n. Thus, the presence of an edge between two nodes
captures their ability to communicate directly and reliably with
each other. However, viewed as systems, networks are “greater
than the sum of their parts” and “network connectivity”
emerges from one-hop connectivity as network resources col-
lectively enable end-to-end data transfer between participating
nodes. Under the underlying assumptions of the disk model it
is customary to identify network connectivity with the usual
notion of graph connectivity in G(n; ρ) (whereby every pair
of nodes can be linked by at least one path over the edges of
the graph).

A. Critical power levels for network connectivity

In the context of this disk model, a natural question con-
sists in determining the minimum power level Pn needed to
ensure (network) connectivity amongst the nodes located at
X1, . . . , Xn – This was in fact the very problem considered
by Gupta and Kumar in [14]. Expressed in terms of the
communication range, this amounts to considering the critical
transmission range Rn defined by

Rn := min (ρ > 0 : G(n; ρ) is connected) , (2)

and the minimimum power level Pn is then simply given by

Pn = ΓRν
n. (3)

The quantity Rn (hence Pn) being a function of
X1, . . . , Xn, it has limited operational use since node lo-
cations are neither available, nor should their knowledge be
expected, especially in the presence of node mobility. To make
matters worse, the probability distribution function of the rv
Rn given by

P (n; ρ) := P [Rn ≤ ρ] , ρ > 0

is typically not available in closed form. To the best of our
knowledge the only situation where such a closed form has
been obtained is the one-dimensional network discussed in
Section IV; see [21] for details. Even there the expression
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yields no insights on how the statistics of X1, . . . , Xn affect
graph connectivity.
Fortunately a case can be made that efficient power alloca-

tion matters only when dealing with a large number of users.
After all this is a regime where the problem assumes added
relevance (as well as some urgency) since energy resources
are painfully finite. In that asymptotic regime it is hoped
that limiting results would be available for Rn, leading to a
reasonably good approximation to it by a non-random quantity
ρ�

n, say

Rn � ρ�
n with very high probability. (4)

A possible formalization of this idea is provided by the
convergence1

Rn

ρ�
n

P→ n 1. (5)

This result immediately suggests an approximation to the
minimum power level Pn by means of the non-random π�

n :=
Γ (ρ�

n)ν .
Such developments are indeed possible under appropriate

assumptions; see below. The relevant results have been ob-
tained from several complementary viewpoints which can be
reconciled upon noting that G(n; ρ) is connected if and only
if Rn ≤ ρ, so that

P [G(n; ρ) is connected] = P (n; ρ), ρ > 0.

The validity of (4)-(5) is then seen to be equivalent to the
zero-one law

lim
n→∞P (n; ρn) = 0 if ρn “(much) smaller than” ρ�

n

and

lim
n→∞P (n; ρn) = 1 if ρn “(much) larger than” ρ�

n.

The approximation ρ�
n to the critical transmission range Rn

acts as a boundary in the space of scalings, and is often
referred to as a critical scaling.

B. Classical results

When studying these zero-one laws the situation most
often considered is the one where the locations X1, . . . , Xn

are independent and uniformly distributed over the domain
D. With the transmission range scaled as a function of n
according to

πρ2
n =

log n + αn

n
, n = 1, 2, . . . (6)

for some sequence α : N0 → R, several authors [14], [32]
have shown that

lim
n→∞P (n; ρn) = 0 if lim

n→∞αn = −∞ (7)

and
lim

n→∞ P (n; ρn) = 1 if lim
n→∞αn = ∞. (8)

In particular, with

πρ2
n ∼ c

log n

n
,

1See Section I-D for notation and conventions.

the zero-one law (7)-(8) implies

lim
n→∞P (n; ρn) =

⎧⎨
⎩

0 if 0 < c < 1

1 if 1 < c,
(9)

and the critical scaling is then determined by

πρ�2
n =

log n

n
, n = 1, 2, . . . (10)

In light of these results, a natural question arises as to their
dependence (and therefore sensitivity) with respect to the node
placement distribution. Non-uniform node placement naturally
occurs when considering node mobility, e.g., random waypoint
mobility [8], [35], [36]. In [31] Penrose gave a partial answer
when the locations X1, . . . , Xn are i.i.d. rvs distributed over
the domain D according to some probability distribution F
with density f . Under mild continuity assumptions on f ,
Penrose showed [31, Thm. 1.1] that (9) still holds if the
transmission range is scaled according to

πρ2
n ∼ c

1
M(F )

· log n

n
(11)

with the constant M(F ) determined by the minima of f on
D and on its boundary. As a result the critical scaling is now
determined through

πρ�2
n =

1
M(F )

· log n

n
, n = 1, 2, . . . (12)

C. Contributions

There remains open the question as to what is the analog of
the zero-one law (7)-(8) under non-uniform node placement
distributions. Interest in such results stems from the fact
that they express extreme sensitivity to deviations from a
critical scaling, and suggest the likely presence of sharp phase
transitions with possible implications for power allocation. To
the best of our knowledge, no results have been reported on
the analogs of (7)-(8) in the non-uniform setting.
In this paper we survey available results concerning this

issue in the context of one-dimensional networks where n
points are distributed independently on the unit interval [0, 1]
according to some probability distribution function F with
density f . Under various sets of assumptions on f , we discuss
(i) the existence of zero-one laws for graph connectivity, (ii)
the type of the zero-one laws available under the specific
assumptions made, (iii) the form of the corresponding critical
scaling and (iv) its dependence on the density function f used
for node placement. Where appropriate, we also present results
and conjectures concerning the width of the corresponding
phase transition.
As part of this narrative we develop a single unifying

framework to present, compare and contrast the surveyed
results, some classical and some recently obtained by the
authors. In particular we approach the convergence (5) (and
related results) through the asymptotic properties of maximal
spacings induced by i.i.d variates on the unit interval [33]. This
approach leads naturally to the notions of weak, strong and
very strong zero-one laws, with attending critical thresholds;
this classification is at the heart of some of our conclusions.
Proofs have been omitted due to space limitations but can be
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found in the Ph.D. thesis [15] and in the papers [18], [20],
[21] and [22]. We refer the reader to these sources for any
additional information and for a detailed discussion of the
finer technical points.

Critical scalings and sharp phase transitions will be shown
to exist in many situations, and this is certainly rather pleasing
from a mathematical standpoint. Ideally, one envisions such
results helping guide the determination of reasonably efficient
(if not minimum) power levels which guarantee connectivity.
However, large scale wireless ad-hoc networks are expected to
be deployed in many vastly different environments with large
variations in critical system parameters. Sound engineering
practice requires that performance should not depend too heav-
ily on model parameters which are either unrealistic or hard to
obtain. These concerns point to the need to better understand
the robustness of the aforementionned mathematical results to
parameter variations.

To that end we provide a systematic discussion of critical
scalings under various assumptions on the density function
f . In the non-vanishing case (i.e., f� > 0 with f� the
minimum of f ), the critical scaling depends on the inverse
of f�. As it is usually very difficult to estimate f� accurately,
this eventually leads to adopting power allocations far more
conservative than the ones suggested by either the strong
or the very strong zero-one laws: Only weak zero-one laws
turn out to be operationally relevant for they require no
information regarding the density f . As a result, the selected
transmission ranges are orders of magnitude larger than log n

n ,
the critical scaling associated with uniform node placement
on the unit interval; see details in Sections VI and VII. This
conservative approach is further amplified when the density
for node placement vanishes (i.e., f� = 0). As a rule, the
critical scaling being very sensitive to f�, only the weak zero-
one laws can be leveraged in any practical sense!

One-dimensional random graphs are of interest in their
own right as simple models of wireless ad-hoc networks
constrained over “linear” highways. They have been discussed
by a number of authors mostly under uniform node placement,
e.g., see [5], [7], [8], [9], [11], [13], [17], [18], [21], [28], [29],
[34], [35], [36] (and references therein). Here we have elected
to discuss one-dimensional networks (rather than their more
physically relevant two-dimensional counterparts) because a
fairly complete picture of its zero-one laws is now available.
This is a consequence of the fact that key one-dimensional
results flow from properties of maximal spacings, thereby
avoiding many of the technical difficulties associated with
higher-dimensional geometry, e.g., see [30], [31], [32]. vs.
[18], [20], [21].

Usually, whenever a one-dimensional result has a higher-
dimensional counterpart, they are structurally similar, e.g.,
compare (6)–(8) vs. Theorem 4.3, or (11) vs. Theorem 5.2.
We expect that this similarity will continue to hold for one-
dimensional results whose analogs in higher dimensions are
not yet known. Thus, the conclusions reached earlier con-
cerning the lack of engineering relevance of strong and very
strong zero-one laws should hold irrespectively of dimension.
The one-dimensional model, through the present survey, helps
make the case although some of the “evidence” may not be in
yet for the original disk model. The higher-dimensional case

is technically more involved and is not completely understood
as of this writing. We hope that the discussion given here will
stimulate work along these lines.
The paper is organized as follows: In Section II we present

the one-dimensional model with its basic assumptions. The
critical transmission range is then related to the maximal spac-
ings in Section III-A. Zero-one laws are introduced in Section
III-B where they are characterized in terms of properties of
maximal spacings. The uniform case is discussed in Section
IV: The zero-one laws are discussed in Section IV-A and
followed in Section IV-B by results on the width of the phase
transition. In Section V we cover the non-uniform case when
the density does not vanish. Section VI contains a discussion
of some of the implications of these results. The case when
the density vanishes is discussed in Section VII.

D. Notation and conventions

Statements involving limits, including asymptotic equiva-
lences, are always understood with n going to infinity. Almost
everywhere is abbreviated as a.e. and all such statements
are made with respect to Lebesgue measure λ on the unit
interval [0, 1]. The random variables (rvs) under consideration
are all defined on the same probability triple (Ω,F , P). All
probabilistic statements are made with respect to this proba-
bility measure P, and we denote the corresponding expectation
operator by E. The notation

P→ n (resp. =⇒n) signifies
convergence in probability (resp. convergence in distribution)
with n going to infinity. Also, we use the notation =st to
indicate distributional equality. The indicator function of an
event E is simply denoted by 1 [E].

II. THE ONE-DIMENSIONAL MODEL

Throughout, let {Xi, i = 1, 2, . . .} denote a sequence
of i.i.d. rvs which are distributed on the unit interval [0, 1]
according to some common probability distribution function
F . For each n = 2, 3, . . ., we think of X1, . . . , Xn as the
locations of n nodes, labelled 1, . . . , n, in the interval [0, 1].
Given a fixed transmission range ρ > 0, nodes i and j are said
to be adjacent if |Xi − Xj | ≤ ρ, in which case an undirected
edge exists between these two nodes. The geometric random
graph induced by this notion of adjacency is denoted by
G(n; ρ). Again, the probability that the graph G(n; ρ) is
connected, is given by

P (n; ρ) = P [G(n; ρ) is connected] ; (13)

obviously P (n; ρ) = 1 whenever ρ ≥ 1.
This one-dimensional model arises in the same manner as

the two-dimensional disk model: The users all transmit at
the same power level P under a simplified pathloss, no user
interference and no fading. For distinct users i and j located
at Xi and Xj , their received power Pi,j is given by

Pi,j := P · |Xi − Xj|−ν

for some ν > 0. Nodes i and j are then able to communicate
if Pi,j ≥ Γ for some threshold Γ > 0, a condition equivalent
to

|Xi − Xj | ≤ ρ with ρ :=
(

P

Γ

)1/ν

.
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A number of assumptions are imposed on F with the most
basic one being given first.
Assumption 1: The distribution F : [0, 1] → [0, 1] is abso-

lutely continuous (with respect to λ).
Thus, F is differentiable a.e. on [0, 1] with F (0) = 0 and

F (1) = 1, and the relation

F (x) =
∫ x

0

f(t)dt, x ∈ [0, 1] (14)

holds for some density function f : [0, 1] → R+. This density
f is determined up to a.e. equivalence [37, Section 9.2].
The essential infimum2

f� := ess inf (f(x), x ∈ [0, 1])

is uniquely determined by F , hence by (the equivalence class
of) f . There is no loss of generality in selecting (as we do
from now on) the density f appearing in (14) so that

f� = inf (f(x), x ∈ [0, 1]) . (15)

This can be achieved by suitably redefining f on a set of zero
Lebesgue measure, and will not affect the results obtained here
since this procedure leaves F unchanged.
It is plain that 0 ≤ f� ≤ 1 with f� = 1 corresponding to

F being the uniform distribution. Most of our results require
the density f to be bounded away from zero in the following
technical sense.
Assumption 2: With the density f selected such that (15)

holds, there exists x� in the interval [0, 1] such that

f� = f(x�) > 0, (16)

and this point x� is a point of continuity for f .
The minimizer appearing in Assumption 2 is not necessarily

unique. Additional assumptions will be made in due course as
needed.

III. CRITICAL TRANSMISSION RANGES, MAXIMAL

SPACINGS AND ZERO-ONE LAWS

Fix n = 2, 3, . . .. As before the minimum power level
Pn needed to ensure network connectivity amongst the nodes
located at X1, . . . , Xn is related to the critical transmission
range Rn through the relation (3) with Rn given by (2).

A. Maximal spacings

With the node locations X1, . . . , Xn, we associate rvs
Xn,1, . . . , Xn,n which are the locations of the n users arranged
in increasing order, i.e., Xn,1 ≤ . . . ≤ Xn,n. The rvs
Xn,1, . . . , Xn,n are the order statistics [3] associated with the
n i.i.d. rvs X1, . . . , Xn. With the convention Xn,0 = 0 and
Xn,n+1 = 1, we define the spacing rvs

Ln,k := Xn,k − Xn,k−1, k = 1, . . . , n + 1 (17)

and the maximal spacing Mn is the rv given by

Mn := max (Ln,k, k = 2, . . . , n) . (18)

2Recall that

f� = sup (a ∈ R : λ({x ∈ [0, 1] : f(x) < a}) = 0) .

We obviously have
Rn = Mn. (19)

For each ρ > 0, the graph G(n; ρ) is connected if and only if
Mn ≤ ρ, so that (13) becomes

P (n; ρ) = P [Mn ≤ ρ] . (20)

We shall scale the transmission range with the number of
nodes in the network through mappings ρ : N0 → R+; we
refer to any such mapping as a scaling. With the help of the
relationship (3) we pass from a scaling ρ : N0 → R+ on the
transmission range to the corresponding scaling π : N0 → R+

on the power level by setting

πn = Γ (ρn)ν , n = 1, 2, . . . . (21)

All results will be given in terms of the transmission range
with an obvious translation to scalings for the power level via
(21).

B. Zero-one laws

We adopt the following terminology regarding zero-one
laws for the property of graph connectivity in G(n; ρ) [28,
p. 376]: A strong zero-one law is said to hold with critical
scaling ρ� : N0 → R+ if for any scaling ρ : N0 → R+

satisfying
lim

n→∞
ρn

ρ�
n

= c (22)

for some c > 0, we have

lim
n→∞P (n; ρn) =

⎧⎨
⎩

0 if 0 < c < 1

1 if 1 < c.
(23)

Any scaling ρ� : N0 → R+ appearing in (22)-(23) will be
called a strong critical scaling.
We have the following simple characterization in terms of

maximal spacings.
Proposition 3.1: The property of graph connectivity in

G(n; ρ) admits a strong zero-one law with critical scaling
ρ� : N0 → R+ if and only if

Mn

ρ�
n

P→ n 1. (24)

This equivalence can be easily understood from the fol-
lowing heuristic argument: Imagine you wish to test whether
the scaling ρ� : N0 → R+ is a strong critical scaling for
the property of graph connectivity. A natural way to do so
consists in picking a scaling ρ : N0 → R+ satisfying (22) and
checking whether (23) holds. We then observe from (20) that

P (n; ρn) = P [Mn ≤ ρn] = P

[
Mn

ρ�
n

≤ ρn

ρ�
n

]
(25)

for all n = 1, 2, . . ., so that

P (n; ρn) � P

[
Mn

ρ�
n

≤ c

]
(26)

for large n. It is now plain from (26) that Mn

ρ�
n
“stabilizing”

in the sense of (24) is equivalent to the validity of a strong
zero-one law; see [20] for details.
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During the discussion we shall also have use for the
following notion [28, p. 376]: A weak zero-one law is said
to hold with critical scaling ρ� : N0 → R+ if

lim
n→∞P (n; ρn) =

⎧⎨
⎩

0 if limn→∞ ρn

ρ�
n

= 0

1 if limn→∞ ρn

ρ�
n

= ∞
(27)

with scaling ρ : N0 → R+. Any scaling ρ� : N0 → R+

appearing in (27) will be called a weak critical scaling.

C. Comments and useful facts

In its weak form the one law (resp. zero law) emerges when
considering scalings ρ : N0 → R+ which are at least an
order of magnitude larger (resp. smaller) than ρ�. On the
other hand, under the strong law, for n sufficiently large,
a transmission range ρn suitably larger (resp. smaller) than
ρ�

n ensures P (n; ρn) � 1 (resp. P (n; ρn) � 0) provided
ρn ∼ cρ�

n with c > 1 (resp. 0 < c < 1). This is in sharp
contrast with (27) in that the strong one law (resp. zero law)
still occurs with scalings ρ : N0 → R+ which are larger (resp.
smaller) than ρ� but of the same order of magnitude as ρ�!
A convenient way to formulate these differences is to

observe that the two types of zero-one laws deal with scalings
ρ : N0 → R+ for which the limit

lim
n→∞

ρn

ρ�
n

= c

exists for some c in [0,∞]. The strong zero-one law corre-
sponds to c in (0,∞) while the weak zero-one law allows
only c = 0,∞. The terminology now becomes clear: The weak
zero-one law requires a “more brutal” scale separation from
the critical scaling ρ� : N0 → R+ than the strong zero-one
law in order to ensure either P (n; ρn) � 0 or P (n; ρn) � 1.
A simple monotonicity argument (in ρ) shows that a strong
zero-one law is necessarily a weak zero-one law, and a strong
critical scaling is therefore also a weak critical scaling.
Critical scalings are not unique as they emerge from lim-

iting properties. Thus, consider two strong critical scalings
ρ�, ρ�� : N0 → R+. It follows from Proposition 3.1 that they
are necessarily asymptotically equivalent, i.e., ρ�

n ∼ ρ��
n . On

the other hand, if the scaling ρ� is a weak critical scaling, then
so will the scaling ρ�� be provided they are order equivalent,
i.e.,

0 < lim inf
n→∞

ρ�
n

ρ��
n

≤ lim sup
n→∞

ρ�
n

ρ��
n

< ∞.

IV. THE UNIFORM CASE

We begin with the well-studied case when F is the uniform
distribution on [0, 1], namely

F (x) = x, x ∈ [0, 1].

The density function is then constant with f(x) = 1 on the
interval [0, 1], and f� = 1. Assumptions 1 and 2 obviously
hold in that case.
As will become apparent from the discussion below, the

scaling ρ�
U : N0 → R+ given by

ρ�
U,n =

log n

n
, n = 1, 2, . . . (28)

occupies a singular place in the space of scalings. The first
indication of this special status can be found in the classical
convergence results given next. They were originally obtained
by Lévy [27] via geometric arguments, but have been rederived
by Darling [2] (by analytical techniques), and others; see
Devroye’s paper [6] for additional references. A simple proof
was also given in [21].
In order to state the results compactly, let Λ denote any

R-valued rv with probability distribution given by

P [Λ ≤ x] = g(x) := e−e−x

, x ∈ R. (29)

Any rv distributed according to (29) is called a Gumbel rv.
Theorem 4.1: Under the uniform distribution, we have

Mn

ρ�
U,n

P→ n 1 (30)

and
nMn − log n =⇒n Λ. (31)

It is now a simple matter to see from (20) and (31) that

lim
n→∞ P

(
n;

log n + x

n

)
= e−e−x

, x ∈ R. (32)

All the results given next in the uniform case are in fact
consequences of (30) and (31) (via (32)).

A. Zero-one laws

Combining Theorem 4.1 with Proposition 3.1 we obtain the
following strong zero-one law for the uniform case.
Theorem 4.2: Assume F to be the uniform distribution. For

any scaling ρ : N0 → R+ such that

lim
n→∞

ρn

ρ�
U,n

= c (33)

for some c > 0, we have

lim
n→∞P (n; ρn) =

⎧⎨
⎩

0 if 0 < c < 1

1 if 1 < c.
(34)

Thus, the scaling ρ�
U is a strong critical scaling in the uniform

case. This zero-one law is already contained in Theorem 1 by
Appel and Russo [1, p. 352]. More recently, Muthukrishnan
and Pandurangan [29, Thm. 2.2] have also derived (33)-(34)
by a bin-covering technique.
Next, in anticipation to strengthening Theorem 4.2, we note

that there is no loss of generality in writing any scaling ρ :
N0 → R+ in the form

ρn =
1
n

(log n + αn)

= ρ�
U,n +

αn

n
, n = 1, 2, . . . (35)

for some function α : N0 → R, hereafter referred to as a
deviation function.
Theorem 4.3: Assume F to be the uniform distribution. For

any scaling ρ : N0 → R+ written in the form (35), it holds that

lim
n→∞P (n; ρn) =

⎧⎨
⎩

0 if limn→∞ αn = −∞

1 if limn→∞ αn = +∞.
(36)
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Fig. 1. Sharp phase transition with n = 1, 000

In [18], we derived Theorem 4.3 by applying the method
of first and second moments [24, p. 55] to the number of
breakpoint users in G(n; ρ).3 In [21] we provided a second
and shorter proof based on (32) and on a monotonicity (in ρ)
argument.
From Theorem 4.3 we see that a perturbation α from

the critical scaling yields the one-law (resp. zero-law) if
limn→∞ αn = ∞ (resp. limn→∞ αn = −∞) with no
additional constraint on α. Contrast this with (34) where we
allow only scalings of the form ρn ∼ cρ�

U,n with c > 0 and
c �= 1, so that αn ∼ (c − 1) logn. It is now plain that (34)
is indeed implied by (36). Whereas “small” deviations of the
form αn = ± log log n are covered by Theorem 4.3, they are
not covered by the zero-one law (34) (since αn = o(log n)
with c = 0). In the context of Theorem 4.2 the more delicate
boundary case c = 1 is partially handled with the help of
Theorem 4.3. For these reasons it is most appropriate to call
(35)-(36) a very strong (and not merely a strong) zero-one law
for the property of graph connectivity; accordingly we refer
to the scaling ρ�

U as a very strong critical scaling.

B. Transition widths and phase transitions

The “sensitivity” to small deviations implied by Theorem
4.3 is in line with the very sharp phase transition already
apparent from graphs reported in several papers, e.g., see
[9], [13], [25] and [26], and from Figure 1 below. Results
formalizing the sharpness of this transition have been obtained
recently in [12], [16], [17] and [21], and are now summarized.
For each n = 2, 3, . . ., the mapping ρ → P (n; ρ) is con-

tinuous and strictly monotone increasing on [0, 1]. Given p in
(0, 1), these properties guarantee the existence and uniqueness
of solutions to the equation

P (n; ρ) = p, ρ ∈ (0, 1). (37)

Let ρU,n(p) denote this unique solution. Its behavior for large
n is given next.

3For each k = 1, . . . , n, node k is said to be a breakpoint node in the
random graph G(n; ρ) if the interval [Xk, Xk +ρ] does not contain any other
node of the graph.

Theorem 4.4: For every p in the interval (0, 1), we have

ρU,n(p) =
log n

n
− 1

n
log
(

log
(

1
p

))
+ o

(
n−1

)
= ρ�

U,n − 1
n

log
(

log
(

1
p

))
+ o

(
n−1

)
.

(38)

Theorem 4.4 can be argued as follows: For each x in R,
the convergence (32) yields the approximation

P

(
n;

log n + x

n

)
� g(x) (39)

for large enough n (with g(x) as defined at (29)). The mapping
g : R → R+ : x → g(x) is strictly monotone and continuous
with limx→−∞ g(x) = 0 and limx→∞ g(x) = 1. Therefore,
for each p in the interval (0, 1), there exists a unique scalar
xp such that g(xp) = p, namely

xp = − log (− log p) = − log
(

log
(

1
p

))
. (40)

Given p in the interval (0, 1), the approximation (39) (with
x = xp) becomes

P
(
n; ρ�

U,n +
xp

n

)
� p

for large n, while the definition of ρU,n(p) gives

P (n; ρU,n(p)) = p, n = 2, 3, . . .

Combining these last two facts we conclude that

P
(
n; ρ�

U,n +
xp

n

)
� P (n; ρU,n(p))

for large n. Continuity suggests that ρ�
U,n + xp

n and ρU,n(p)
behave in tandem asymptotically, and this lays the ground for
the validity of (38); details are available in [21].4

Next, set

δU,n(p) := ρU,n(1 − p) − ρU,n(p), p ∈
(

0,
1
2

)
.

The transition width δU,n(p) measures the increase in trans-
mission range needed in the n node network to drive the
probability of connectivity from level p to level 1 − p. The
more rapidly ρU,n(p) decays as a function of n, the sharper
the phase transition. The following result is an easy corollary
to Theorem 4.4.
Corollary 4.5: For every p in the interval (0, 1

2 ), we have

δU,n(p) =
C(p)

n
+ o

(
n−1

)
(41)

with constant C(p) given by

C(p) := log
(

log p

log(1 − p)

)
. (42)

Recently Goel et al. [12, Thm. 1.1] have shown that

δU,n(p) = O

(√
− log p

n

)
. (43)

4Similar arguments can be made in the two-dimensional case on the basis
of the analog of (32). See the conference papers [16] [17] for details.
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In fact these asymptotic bounds were established for every
monotone graph property. The results obtained here markedly
improve on (43) in that exact asymptotics are now provided
and the rate of decay (namely, n−1) is much faster than
the rough asymptotic bound given by (43). However, these
conclusions hold only for graph connectivity.
As we close Section IV, a natural question arises as to

what happens to these results when F is not the uniform
distribution. This is taken on in Sections V and VII.

V. THE NON-UNIFORM CASE WITH f� > 0

A. The strong zero-one law

Under Assumptions 1 and 2, the scaling ρ�
F : N0 → R+

given by

ρ�
F,n :=

1
f�

· log n

n
=

1
f�

· ρ�
U,n, n = 1, 2, . . . (44)

is well defined; in the uniform case it reduces to the critical
scaling (28). The following result was established in [20] and
constitutes the appropriate extension of Lévy’s result (30) to
non-uniform distributions.
Theorem 5.1: Under any distribution F satisfying Assump-

tions 1 and 2, we have

Mn

ρ�
F,n

P→ n 1. (45)

With the help of Proposition 3.1 we see from (45) that
Theorem 4.2 has the following analog in the non-uniform case.
Theorem 5.2: Assumptions 1 and 2 are enforced on the

distribution F . For any scaling ρ : N0 → R+ such that

lim
n→∞

ρn

ρ�
F,n

= c (46)

for some c > 0, we have

lim
n→∞P (n; ρn) =

⎧⎨
⎩

0 if 0 < c < 1

1 if 1 < c.
(47)

Thus, the scaling ρ�
F : N0 → R+ is a strong critical scaling

for graph connectivity – Note the structural similarity with
(11)-(12) in the higher dimensional case. Note also that f�

is the only artifact of the density function which enters its
definition – The actual location x� where the minimum is
achieved plays no role as long as it is a point of continuity
for f .
The convergence (45) is compatible with a multi-

dimensional result obtained by Penrose [30]: Formally setting
d = 1 in Theorem 1.1 of [30, p. 247] (discussed under the
dimensional assumption d ≥ 2), we obtain (45) in a.s. form.

B. Additional assumptions

A number of additional assumptions are needed to formulate
the analog of Theorem 4.3 for non-uniform distributions.
Assumption 3: The distribution F admits a density function

f : [0, 1] → R+ which is continuous on the interval [0, 1]
except possibly at a finite number of points. Each point of

discontinuity of f is either a removable discontinuity or a
discontinuity of the first kind.5

Under Assumption 3, there is no loss of generality in
assuming (as we do from now on) that the density f is right-
continuous with left limit at every point of discontinuity in
the open interval (0, 1), and continuous at the boundary points
x = 0, 1. This can be achieved by suitably redefining f at the
points of discontinuity and will not affect the results obtained
here since this procedure leaves F unchanged.
With f� still defined by (15), we write

f� := sup (f(x), x ∈ [0, 1]) . (48)

Through the possible redefinition mentioned above, Assump-
tion 3 on f guarantees 0 ≤ f� ≤ f� < ∞ with f� ≤ 1.
Our next assumption constitutes a stronger form of Assump-

tion 2.
Assumption 4: With the density f as selected in Assumption

3, there exists a single element x� in the interval [0, 1] such that

f� = f(x�) > 0, (49)

and this point x� is a point of continuity for f .
Assumptions 3 and 4 are strengthened versions of As-

sumptions 1 and 2, respectively. In particular, according to
Assumption 4 the density function f is required to exhibit
a single global minimum. We complement this property by
requiring a representation for the density f which in effect
imposes a form of smoothness near the minimizer x�.
Assumption 5: With the density f as selected in Assumption

3 and the uniqueminimizerx� as specified in Assumption 4, the
density function f can be represented in the form

f(x) = f� + a|x − x�|r + h(x), x ∈ [0, 1] (50)

for some parameters r > 0 and a > 0, and for some function
h : [0, 1] → R such that

lim
x→x�

h(x)
|x − x�|r = 0. (51)

The conditions (50) and (51) are not overly restrictive. For
instance, they hold when the density function f admits 2�+1
bounded derivatives f (1), . . . f (2�+1) : [0, 1] → R such that

f (1)(x�) = . . . = f (2�−1)(x�) = 0, f (2�)(x�) > 0

for some positive integer � when x� is a unique global
minimum for f in the open interval (0, 1). In that case, the
existence of a Taylor series expansion at x = x� leads to
taking r = 2� and

a =
1

(2�)!
f (2�)(x�)

so that (51) holds with the choice

h(x) = f(x) − f(x�) − a(x − x�)2�, x ∈ [0, 1].

The conditions imposed on f may not be the weakest
possible to guarantee the results. However, they cover most
situations likely to be encountered in applications such as
wireless networking.

5A discontinuity of the first kind is also known as a jump discontinuity,
and is characterized by the existence of right and left limits.
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C. The very strong zero-one law

With Assumptions 3-5 enforced on F , introduce the scaling
ρ��

F : N0 → R+ given by

ρ��
F,n :=

1
f�

· 1
n

(
log n − 1

r
log log n

)
(52)

for all n = 1, 2, . . . – This scaling reduces to the critical
scaling (28) found in the uniform case (where f� = 1 and
r = ∞).
The results will assume a more symmetric form if we write

a scaling ρ : N0 → R+ in the form

ρn =
1
f�

· 1
n

(
log n − 1

r
log log n + αn

)

= ρ��
F,n +

1
f�

αn

n
, n = 1, 2, . . . (53)

for some deviation function α : N0 → R. Again there is no
loss of generality in using the representation (53). The analog
of Theorem 4.3 for non-uniform distributions is presented
next.
Theorem 5.3: Assumptions 3-5 are enforced on the distribu-

tion F . Then, for any scaling ρ : N0 → R+ written in the form
(53) with deviation function α : N0 → R, we have

lim
n→∞P (n; ρn) =

⎧⎨
⎩

0 if limn→∞ αn = −∞

1 if limn→∞ αn = +∞.
(54)

To the best of our knowledge there is no analog of Theorem
5.3 in the higher-dimensional case. The scaling ρ��

F is also a
strong critical scaling since asymptotically equivalent to ρ�

F ,
i.e., ρ�

F,n ∼ ρ��
F,n as we note that

ρ��
F,n

ρ�
F,n

= 1 − 1
r

log log n

log n
, n = 2, 3, . . . (55)

Theorem 5.3 is easily seen to imply the strong law (46)-(47).
However, the converse is not true as the zero-one laws asso-
ciated with the critical scalings ρ�

F and ρ��
F capture different

levels of sensitivity to “small” deviations from criticality. For
the same reasons that were given when discussing Theorem
4.3 in the uniform case, it is appropriate to interpret Theorem
5.3 as a very strong zero-one law in the non-uniform case, and
to refer to the scaling ρ��

F as a very strong critical scaling.
It depends on the density f both through its minimum f�

and the parameter r which captures the smoothness of f near
its minimum. Surprisingly enough, the “amplitude” value a
makes no contribution!
When the density f achieves its minimum value f� at non-

isolated points (thereby violating Assumption 4), Theorem 5.3
needs to be modified as follows.
Theorem 5.4: With Assumption 1 and Assumption 2 en-

forced on F , assume that f(x) = f� for all x in some non-
empty open interval I ⊆ (0, 1). Then, (54) still holds for any
scaling ρ : N0 → R+ written in the form

ρn =
1
f�

· 1
n

(log n + αn) , n = 1, 2, . . . . (56)

with deviation function α : N0 → R.
As expected we need only set r = ∞ in Theorem 5.3: Under

the assumptions of Theorem 5.4, the density function f has

infinite smoothness near its infimum since locally flat there.
Theorem 5.4 can also be viewed as an extension of Theorem
4.3 to distributions F whose density are locally constant (thus
uniform) in a neighborhood of x�.

D. Towards a shorter proof of Theorem 5.3

Theorem 5.3 was established in [22] by a variant of the
method of first and second moments applied to the number
of breakpoint users in G(n; ρ). Surprisingly, in the non-
uniform case this approach turns out to be far more tedious
to implement than any of the proofs given for Theorem 4.3
in [18], [21]. However, not all is lost: First, as pointed out
earlier, Theorem 4.2 and Theorem 4.3 are easy consequences
of (30) and (31), respectively. Next, Theorem 5.2 follows from
(45) which is the analog of (30) for non-uniform distributions.
Given that (31) complements (30), it is a small step to wonder
whether (45) admits a similar complement, in which case such
a result might form the basis for a short(er) proof of Theorem
5.3.
The form of the very strong critical scaling ρ��

F suggests
that a natural complement to (45) might take the following
form.
Conjecture 5.5: With Assumptions 3-5 enforced on the dis-

tribution F , we have

nf�Mn − log n +
1
r

log log n + γn =⇒n Λ (57)

where the sequence γ : N0 → R depends on F and satisfies
γn = o(1).
Work is in progress on this conjecture; additional assump-

tions on F might be required. Earlier results by Deheuvels [4]
point in the direction of Conjecture 5.5; see Section VI-D for
details.
If Conjecture 5.5 were indeed correct, for each x in R, we

note that

P

[
nf�Mn − log n +

1
r

log log n + γn ≤ x

]

= P

[
Mn ≤ log n − 1

r log log n − γn + x

nf�

]

= P

[
Mn ≤ ρ��

F,n +
1
f�

x + o(1)
n

]
(58)

for all n = 2, 3, . . .. Using (57) we now get

lim
n→∞ P

(
n; ρ��

F,n +
1
f�

x

n

)
= e−e−x

(59)

with the help of an easy monotonicity argument. This conver-
gence can be viewed as the analog of (32) for non-uniform
distributions, and another monotonicity argument then leads
readily from (59) to the conclusion of Theorem 5.3 – Indeed
a short proof!

E. Phase transitions

As was the case for the uniform distribution, a convergence
result such as (57) would allow us to characterize the width
of phase transitions in the non-uniform case: Assume As-
sumptions 3-5 enforced on the distribution F . With obvious
modifications to the notation, for each n = 2, 3, . . . and each
p in the interval (0, 1), let ρF,n(p) denote the unique solution
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Fig. 2. Phase transition width when p = 0.1 and fr(x) = 0.9+ 0.1rxr−1

(x ∈ [0, 1]) with r = 2, 4, 6.

to (37). By arguments similar to the ones given for Theorem
4.4 [21], we readily obtain from Conjecture 5.5 (if valid) that

ρF,n(p) = ρ��
F,n − 1

n
log
(

log
(

1
p

))
+ o

(
n−1

)
.

Thus, with constant C(p) also given by (42), we conclude that

δF,n(p) = ρF,n(1 − p) − ρF,n(p)

=
1
f�

C(p)
n

+ o
(
n−1

)
(60)

for every p in the interval (0, 1
2 ). It is worth noting that the

impact of F on (the leading term in) the width transition
is given only through f� with the degree of smoothness r
and the amplitude value a making no contribution at all! This
remarkable lack of dependence is rather unexpected.
To illustrate this point, consider the density functions

fr(x) = 0.9 + 0.1rxr−1, x ∈ [0, 1]

with r = 2, 4, 6. Taking (60) as our point of departure, we
approximate the phase transition width through the quantity

δ�
F,n(p) :=

1
f�

C(p)
n

, n = 2, 3, . . .

for every p in the interval (0, 1
2 ). This quantity is independent

of the degree of smoothness r.
In Figure 2 we have displayed the simulation results to-

gether with the numerical approximations as n ranges from
n = 1000 to n = 9000 in increments of 1000. The symbols
represent the simulation results while the dash line gives the
numerical approximation δ�

F,n(p).6 For each value of n, it is
clear that the transition widths for the three density functions
are almost equal; as expected, the approximation accuracy
improves as n becomes large. This provides some indirect
confirmation of the validity of the Conjecture 5.5.

6Each symbol has been obtained as follows: For each value of n, an
estimate of P (n; ρ) was estimated by averaging the results of 10000
independent trials. This was done with ρ ranging over the unit interval with
a very small granularity. Once this estimate becomes available, it is then
possible to estimate the values of ρ at which the probability of connectivity
is p and 1 − p, respectively, and calculate the transition width accordingly.

VI. DISCUSSION

A. Uniform vs. non-uniform

Under the assumptions of Theorem 5.2, the comparison

ρ�
U,n ≤ ρ�

F,n, n = 1, 2, . . . (61)

holds since f� ≤ 1, showing that the uniform distribution
yields the smallest strong critical scaling in the class of
distributions satisfying Assumptions 1 and 2.
The value of f� is typically not known to the network users,

and there seems to be little operational reason for them to
have this knowledge (especially when nodes are mobile). Since
f� is the minimum of a density function, estimating it will
be fraught with difficulties akin to those encountered in the
estimation of probabilities of rare events. In particular, the
unavailability of data sets large enough could lead to poor
estimates.
Under these circumstances the sensitivity to deviations

represented by the strong zero-one laws of Theorem 5.2 and
Theorem 5.3 cannot be leveraged in any meaningful way to
guide the power allocation at the nodes: The sharp phase
transitions discussed in earlier sections, though theoretically
pleasing, cannot be exploited practically as this would require
not only knowledge of f� but also the availability of the
smoothness parameter r. In practice we are left with weak
zero-one laws as we note that the scaling ρ�

U is a weak critical
scaling, a robust, albeit weak, conclusion which holds across
all distributions F satisfying (16).

B. From uniform to non-uniform node placement

Earlier we already remarked that ρ�
F = ρ�

U when F is the
uniform distribution. Thus, as we pass from Theorem 4.2 to
Theorem 4.3, it might have been tempting to infer from the
strong zero-one law (46)-(47) that in the non-uniform case the
very strong zero-one law would be valid for scalings ρ : N0 →
R+ written in the form

ρn =
1
f�

· 1
n

(log n + βn) , n = 1, 2, . . . (62)

with deviation function β : N0 → R. Under this guess, the
strong critical scaling ρ�

F would also have been a very strong
critical scaling.
Under the assumptions of Theorem 5.3 this guess is in fact

incorrect with the following consequences: For instance, the
scaling ρ̃ : N0 → R+ given by

ρ̃n =
1
f�

· 1
n

(
log n − 1

2r
log log n

)
, n = 1, 2, . . . (63)

is of the form (62) with deviations βn = − 1
2r log log n for

all n = 1, 2, . . .. Were our guess correct, we would conclude
erroneously that limn→∞ P (n; ρ̃n) = 0. Instead Theorem 5.3
yields the correct conclusion limn→∞ P (n; ρ̃n) = 1 since the
scaling ρ̃ is also of the form (52) with αn = 1

2r log log n for
all n = 1, 2, . . .! Thus, in the framework of Theorem 5.3, the
extreme sensitivity to deviations expressed by a very strong
zero-one law, is now given in terms of deviations taken relative
to ρ��

F (and not to ρ�
F ). This change in baseline is remarkable

in light of the fact that ρ�
F,n and ρ��

F,n become very quickly
indistinguishable from each other as n increases! Indeed, the



HAN and MAKOWSKI: SENSITIVITY OF CRITICAL TRANSMISSION RANGES TO NODE PLACEMENT DISTRIBUTIONS 1075

very fast convergence in limn→∞
(
ρ�

F,n − ρ��
F,n

)
= 0 is an

immediate consequence of the observation

ρ�
F,n − ρ��

F,n =
1
r

log log n

n
, n = 2, 3, . . .

On the other hand, under the assumptions of Theorem 5.4 the
guess based on (63) is the correct one, since ρ�

F is also a very
strong scaling in that setting.

C. The smoother, the larger

Consider now two distributions F1 and F2 satisfying the
conditions of Theorem 5.3 with parameters (f1,�, r1) and
(f2,�, r2). If f1,� = f2,�, the comparison

ρ��
F1,n ≤ ρ��

F2,n, n = 1, 2, . . . (64)

holds whenever
r1 ≤ r2. (65)

Thus, the smoother the density f at x�, the larger the very
strong critical scaling.

D. Conjecture 5.5 and earlier results by Deheuvels

In the context of Conjecture 5.5 it is appropriate to mention
some earlier results by Deheuvels [4]. They are given under the
following conditions somewhat reminiscent of Assumptions 3-
5: (i) The density function f is continuous on (0, 1); (ii) The
minimizer x� appearing in (16) is assumed to be an isolated
minimizer; (iii) For some finite constant r > 0, we have 0 <
dr ≤ Dr < ∞ where7

dr := lim inf
h→0

(
f(x� + h) − f(x�)

|h|r
)

and

Dr := lim sup
h→0

(
f(x� + h) − f(x�)

|h|r
)

.

Under these conditions, Deheuvels [4, Thm. 4, p. 1183] (where
k = 1) has shown that

lim inf
n→∞

(
nf�Mn − log n

log log n

)
= −1

r
a.s. (66)

and

lim sup
n→∞

(
nf�Mn − log n

log log n

)
= 2 − 1

r
a.s. (67)

These results certainly point in the direction of the conjectured
convergence (57).
As we recall that convergence in distribution is equivalent

to convergence in probability when the limit is a.s. constant,
we conclude from (57) that

nf�Mn − log n

log log n

P→ n − 1
r
, (68)

but this does not contradict (66)-(67) as these convergence
statements are given in the stronger a.s. sense.

7This is the form that the conditions take when x� is an interior point of the
interval [0, 1]. Obvious modifications need to be made when either x� = 0
or x� = 1.

VII. VANISHING DENSITIES

A natural question arises as to the validity and form of
the results of Section V when the density f vanishes on the
interval [0, 1].

A. A weak zero-one law

When f� = 0, a blind substitution in (44) yields ρ�
F,n = ∞

for all n = 1, 2, . . ., and this begs the question as to what is
the appropriate analog of Theorem 5.2. No general answer to
this question is available given that it is shaped in a crucial
way by the properties of the density where it vanishes.
In [19] we have shown through simple examples that when

(16) fails, the property of graph connectivity exhibits only a
weak zero-one law: More specifically, with p > 0 consider
the probability distribution Fp given by

Fp(x) = xp+1, x ∈ [0, 1] (69)

with corresponding density function fp given by

fp(x) = (p + 1)xp, x ∈ [0, 1]. (70)

Theorem 5.2 is now replaced by the following result.
Theorem 7.1: Assume F to be given by (69) for some p > 0.

The property of graph connectivity in the randomgraphG(n; ρ)
admits only a weak zero-one law, and the scaling ρ�

p : N0 →
R+ given by

ρ�
p,n = n− 1

p+1 , n = 1, 2, . . . (71)

is the corresponding weak critical scaling.
To get a sense as to why this is so, we refer the reader to the

discussion in [19] where we provided elementary arguments
to show that

Mn

ρ�
p,n

=⇒n Lp (72)

for some non-degenerate rv Lp with 0 < Lp < ∞ a.s. As (24)
fails (since Lp is non-degenerate), Proposition 3.1 precludes
the existence of a strong zero-one law. The existence of a
weak zero-one law now follows readily from (25) and (72);
see [19] for details.

B. Discussion

As mentioned earlier, the scaling ρ�
U is a weak critical

scaling under all distributions F satisfying (16). However,
with F given by (69), the critical scaling given by (71) is
now of a much larger order since

log n

n
= o

(
n− 1

p+1

)
.

Implications for resource dimensioning take the following
form: Critical scalings serve as proxy for the critical transmis-
sion range when n is large. Thus, under node placement with a
vanishing density such as (69), the critical transmission range
is orders of magnitude larger than would otherwise have been
the case when (16) holds, resulting in higher minimum power
levels to ensure connectivity. Similar qualitative conclusions
were already pointed out by Santi [36, Thm. 4] for two-
dimensional networks under the random waypoint mobility
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Fig. 3. Phase transition with n = 1, 000

model without pause. In one dimension, the corresponding
stationary spatial node density is given by

fRWP(x) = 6 x(1 − x), 0 ≤ x ≤ 1. (73)

Here, under (69) we can go beyond qualitative statements and
give precise information on the order of the asymptotics for
the critical transmission range.
Although the distribution (69) was selected because its

simpler form facilitated the analysis, it is nevertheless rep-
resentative of vanishing densities such as (73). Indeed, both
Theorems 5.2 and 7.1 derive from limiting properties of the
maximal spacing under F . Such properties are influenced by
the behavior of the density in the vicinity of its minimum
point [23, p. 519]: The densities (70) (with p = 1) and (73)
have similar behavior near x = 0 since fRWP(x) ∼ 6x as
x � 0. Thus, the results discussed here suggest that this model
requires a much larger critical transmission scaling given by

ρ�
RWP,n =

1√
n

, n = 1, 2, . . . .

Under uniform node placement, the convergence (32)
crisply captures the fact that the phase transition associated
with very strong zero-one laws is very sharp indeed [15], [17],
[21]. In the non-uniform case with f� > 0 the conjectured
convergence (57) plays a similar role. However, the absence
of (very) strong critical scalings under (69) precludes such
convergence, and essentially rules out the possibility that the
corresponding phase transition will be sharp in this case.
These conclusions are already apparent from the limited

simulation results displayed in Figure 3 where nodes are
placed on [0, 1] according to Fp with p = 0, 1, 2; the case
p = 0 corresponds to the uniform distribution. For each p =
0, 1, 2, the figure displays the corresponding plot of P (n, ρ)
as a function of ρ (in base 10 log-scale) for n = 1, 000. As
expected, the phase transition is much sharper for p = 0 than
for positive p. These displays also suggest that the sharpness
of the phase transition decreases with increasing p. However,
at the time of this writing, we are not in a position to offer
precise quantitative results validating this claim.
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